The “clusterSplit” Function in R

  • Package: parallel

  • Purpose: Split data into chunks for parallel processing.

  • General class: Parallel computing

  • Required argument(s):

    • seq: The data to be split.

    • cl: The cluster object created with makeCluster.

  • Notable optional arguments:

    • None

  • Example:

  • # Load the parallel package
    library(parallel)

    # Create a cluster with 4 nodes
    cl <- makeCluster(4)

    # Generate sample data
    data <- 1:100

    # Split the data into 4 parts (as a list) using clusterSplit
    parts <- clusterSplit(cl, data)

    # Use parSapply to take the sqrt of the split sample data
    Result <- parSapply(cl, parts, sqrt)

    # Print the resulting matrix as a vector
    print(as.vector(Result))

    # Stop the cluster
    stopCluster(cl)

  • In this example, we create a cluster cl with 4 nodes using the makeCluster function from the parallel package. Then, we generate sample data and use clusterSplit to split the data into a list with 4 parts. Finally, we use the parSapply function to take the square root of each value.

Previous
Previous

The “detectCores” Function in R

Next
Next

The “clusterApply” Function in R