The “h2o.deeplearning” Function in R

  • Package: h2o

  • Purpose: Performs Deep Learning modeling for classification and regression tasks.

  • General class: Modeling

  • Required argument(s):

    • x: A vector containing the names or indices of the predictor variables.

    • y: The name or index of the response variable.

    • training_frame: The H2OFrame object containing the training data.

  • Notable optional arguments:

    • validation_frame: The H2OFrame object containing the validation data.

    • activation: The activation function for the hidden layers. Defaults to “Rectifier”.

    • hidden: The number and sizes of hidden layers.

    • epochs: The number of passes over the training dataset.

  • Example:

  • # Load the h2o library
    library(h2o)

    # Initialize h2o
    h2o.init()

    # Import data
    data <- h2o.importFile("https://s3.amazonaws.com/h2o-public-test-data/smalldata/iris/iris_wheader.csv")

    # Define predictor and response variables
    predictors <- c("sepal_len", "sepal_wid", "petal_len", "petal_wid")
    response <- "class"

    # Split the data into train and test sets
    split <- h2o.splitFrame(data, ratios = 0.8, seed = 123)
    train <- h2o.assign(split[[1]], "train")
    test <- h2o.assign(split[[2]], "test")

    # Train the Deep Learning model
    dl_model <- h2o.deeplearning(x = predictors, y = response, training_frame = train, validation_frame = test,
    activation = "RectifierWithDropout", hidden = c(200, 200), epochs = 50)

    # View the model summary
    summary(dl_model)

  • This example demonstrates how to train a Deep Learning model using the h2o.deeplearning function from the h2o package. The function takes predictor variables (x), response variable (y), and training data (training_frame). Optional arguments like activation, hidden, and epochs can also be specified. Finally, the summary function is used to view the model summary.

Previous
Previous

The “h2o.randomForest” Function in R

Next
Next

The “h2o.gbm” Function in R