The “naive_bayes” Function in R
Package: naivebayes
Purpose: Fit a Naive Bayes classifier to data.
General class: Model
Required argument(s):
x: Predictor variables (data frame or matrix).
y: Response variable (vector).
Notable optional arguments:
laplace: Laplace smoothing parameter (default is 0).
usekernel: Boolean indicating if kernel density estimation should be used for continuous variables (default is FALSE).
Example:
# Load the required library
library(naivebayes)
# Example dataset
data(iris)
# Fit a Naive Bayes model
model <- naive_bayes(Species ~ ., data = iris, laplace = 1)
# Summary of the model
print(model)
# Predict on new data (although in this example, the data is not new)
predictions <- predict(model, iris)
# Print predictions
head(predictions)In this example, the naive_bayes function from the naivebayes package is used to fit a Naive Bayes classifier to the iris dataset. The response variable is Species, and all other columns are used as predictor variables. Laplace smoothing is applied with a parameter value of 1. The model is then used to make predictions on the same dataset.