The “optimizing” Function in R
Package: rstan
Purpose: Performs maximum a posteriori (MAP) estimation for a Stan model
General class: Bayesian inference
Required argument(s):
object: A stan model compiled with a function like “stan_model”.
data: List or environment containing data for the Stan model.
Notable optional arguments:
algorithm: The optimization algorithm to use, such as “LBFGS”, “Newton”, or “BFGS”.
init: Initial values for optimization.
seed: Random seed for reproducibility.
Example:
# Load the rstan library
library(rstan)
# Define the Stan model code
model_code <- '
data {
int<lower=0> N;
real y[N];
}
parameters {
real mu;
real<lower=0> sigma;
}
model {
y ~ normal(mu, sigma);
}
'
# Compile the Stan model
model <- stan_model(model_code = model_code)
# Perform MAP estimation
N = 100
fit <- optimizing(model, data = list(N = N, y = rnorm(N)))
# View summary of MAP estimates
print(fit)This example demonstrates how to use the “optimizing” function from the rstan package to perform maximum a posteriori (MAP) estimation for a compiled Stan model. The function requires the result of fitting a Stan model (stanfit object) as input and allows specifying optional arguments like the optimization algorithm, initial values, and random seed for reproducibility.