The “glmnet” Function in R

  • Package: glmnet

  • Purpose: Fit a generalized linear model via penalized maximum likelihood.

  • General class: Regression

  • Required argument(s):

    • x: A matrix of predictors.

    • y: A response variable.

  • Notable optional arguments:

    • family: The response type. Can be “gaussian” (default), “binomial”, “poisson”, “multinomial”, “cox”, “mgaussian”.

    • alpha: The elastic net mixing parameter. The default is 1 (lasso).

    • lambda: A user-specified sequence of lambda values.

    • standardize: Logical value indicating whether to standardize the predictors. The default is TRUE.

  • Example:

  • # Load the required library
    library(glmnet)

    # Generate example data
    set.seed(123)
    x <- matrix(rnorm(100*20), 100, 20)
    y <- rnorm(100)

    # Fit a lasso model
    fit <- glmnet(x, y, alpha = 1)

    # Print the model
    print(fit)

  • In this example, the glmnet function from the glmnet package is used to fit a lasso model to the example data. The matrix x contains the predictors, and the vector y contains the response variable. The alpha parameter is set to 1 to fit a lasso model. The resulting fit object contains the fitted model.

Previous
Previous

The “install_keras” Function in R

Next
Next

The “abind” Function in R