The “glmnet” Function in R
Package: glmnet
Purpose: Fit a generalized linear model via penalized maximum likelihood.
General class: Regression
Required argument(s):
x: A matrix of predictors.
y: A response variable.
Notable optional arguments:
family: The response type. Can be “gaussian” (default), “binomial”, “poisson”, “multinomial”, “cox”, “mgaussian”.
alpha: The elastic net mixing parameter. The default is 1 (lasso).
lambda: A user-specified sequence of lambda values.
standardize: Logical value indicating whether to standardize the predictors. The default is TRUE.
Example:
# Load the required library
library(glmnet)
# Generate example data
set.seed(123)
x <- matrix(rnorm(100*20), 100, 20)
y <- rnorm(100)
# Fit a lasso model
fit <- glmnet(x, y, alpha = 1)
# Print the model
print(fit)In this example, the glmnet function from the glmnet package is used to fit a lasso model to the example data. The matrix x contains the predictors, and the vector y contains the response variable. The alpha parameter is set to 1 to fit a lasso model. The resulting fit object contains the fitted model.