The “md.pattern” Function in R
Package: mice
Purpose: Identify the pattern of missing data.
General class: Imputation
Required argument(s):
data: A data frame or matrix with missing values.
Notable optional arguments:
plot: Logical, whether to plot the missing data pattern (default is TRUE).
rotate.names: Logical, whether to rotate variable names in the plot (default is FALSE).
Example:
# Load the required library
library(mice)
# Create a sample data frame with missing values
data <- data.frame(
age = c(25, 30, NA, 40, 35, NA),
income = c(50000, 55000, 60000, NA, 65000, 70000)
)
# Identify the pattern of missing data
missing_pattern <- md.pattern(data, plot = TRUE, rotate.names = TRUE)
# Print the missing data pattern
print(missing_pattern)This example demonstrates how to use the md.pattern function from the mice package to identify and visualize the pattern of missing data in a dataset. The data argument takes a data frame or matrix with missing values. Optional arguments like plot and rotate.names can be used to customize the output and visualization of the missing data pattern.