The “mice” Function in R
Package: mice
Purpose: Perform multiple imputation to handle missing data.
General class: Imputation
Required argument(s):
data: A data frame or matrix with missing values.
Notable optional arguments:
m: Number of multiple imputations to generate (default is 5).
method: Method of imputation (default is pmm for predictive mean matching).
maxit: Maximum number of iterations (default is 5).
seed: Seed for random number generation to ensure reproducibility.
printFlag: Logical, indicating whether to print progress messages (default is TRUE).
Example:
# Load the required library
library(mice)
# Create a sample data frame with missing values
data <- data.frame(
age = c(25, 30, NA, 40, 35, NA),
income = c(50000, 55000, 60000, NA, 65000, 70000)
)
# Perform multiple imputation
imputed_data <- mice(data, m = 5, method = 'pmm', maxit = 5, seed = 123)
# Print the imputation result
print(imputed_data)
# Extract the first completed data set
completed_data <- complete(imputed_data)
# Print the completed data
print(completed_data)This example demonstrates how to handle missing data using the mice function from the mice package. The data argument takes a data frame or matrix with missing values. Optional arguments like m, method, maxit, seed, and printFlag can be used to customize the multiple imputation process.