The “mice” Function in R

  • Package: mice

  • Purpose: Perform multiple imputation to handle missing data.

  • General class: Imputation

  • Required argument(s):

    • data: A data frame or matrix with missing values.

  • Notable optional arguments:

    • m: Number of multiple imputations to generate (default is 5).

    • method: Method of imputation (default is pmm for predictive mean matching).

    • maxit: Maximum number of iterations (default is 5).

    • seed: Seed for random number generation to ensure reproducibility.

    • printFlag: Logical, indicating whether to print progress messages (default is TRUE).

  • Example:

  • # Load the required library
    library(mice)

    # Create a sample data frame with missing values
    data <- data.frame(
    age = c(25, 30, NA, 40, 35, NA),
    income = c(50000, 55000, 60000, NA, 65000, 70000)
    )

    # Perform multiple imputation
    imputed_data <- mice(data, m = 5, method = 'pmm', maxit = 5, seed = 123)

    # Print the imputation result
    print(imputed_data)

    # Extract the first completed data set
    completed_data <- complete(imputed_data)

    # Print the completed data
    print(completed_data)

  • This example demonstrates how to handle missing data using the mice function from the mice package. The data argument takes a data frame or matrix with missing values. Optional arguments like m, method, maxit, seed, and printFlag can be used to customize the multiple imputation process.

Previous
Previous

The “md.pattern” Function in R

Next
Next

The “kfold” Function in R