The “parLapply” Function in R

  • Package: parallel

  • Purpose: Applies a function to each element of a list or vector in parallel.

  • General class: Parallel computing

  • Required argument(s):

    • cl: A cluster object specifying the cluster to use for parallel processing.

    • X: A list or vector to be processed.

    • fun: The function to apply to each element of X.

  • Notable optional arguments:

    • ...: Additional arguments passed to the function fun.

  • Example:

  • # Load the parallel library
    library(parallel)

    # Create a cluster object with 2 cores
    cl <- makeCluster(2)

    # Define a function to square a number
    square <- function(x) { return(x^2) }

    # Create a list of numbers
    numbers <- list(1, 2, 3, 4, 5)

    # Apply the square function to each element of the list in parallel
    result <- parLapply(cl, numbers, square)

    # Close the cluster
    stopCluster(cl)

    # Print the result
    print(result)

  • This example demonstrates how to use the parLapply function from the parallel package to apply a function (square) to each element of a list (numbers) in parallel using a cluster object (cl). The ... argument allows passing additional arguments to the function square. The output is the squared values of the elements in the list.

Previous
Previous

The “parSapply” Function in R

Next
Next

The “multinom” Function in R