The “parSapply” Function in R

  • Package: parallel

  • Purpose: Applies a function to each element of a list or vector in parallel and simplifies the results into a vector or matrix.

  • General class: Parallel computing

  • Required argument(s):

    • cl: A cluster object specifying the cluster to use for parallel processing.

    • X: A list or vector to be processed.

    • fun: The function to apply to each element of X.

  • Notable optional arguments:

    • ...: Additional arguments passed to the function fun.

  • Example:

  • # Load the parallel library
    library(parallel)

    # Create a cluster object with 2 cores
    cl <- makeCluster(2)

    # Define a function to square a number
    square <- function(x) { return(x^2) }

    # Create a list of numbers
    numbers <- list(1, 2, 3, 4, 5)

    # Apply the square function to each element of the list in parallel and simplify the result to a vector
    result <- parSapply(cl, numbers, square)

    # Close the cluster
    stopCluster(cl)

    # Print the result
    print(result)

  • This example demonstrates how to use the parSapply function from the parallel package to apply a function (square) to each element of a list (numbers) in parallel using a cluster object (cl). The ... argument allows passing additional arguments to the function square. The output is a vector containing the squared values of the elements in the list.

Previous
Previous

The “parRapply” Function in R

Next
Next

The “parLapply” Function in R