The “parRapply” Function in R

  • Package: parallel

  • Purpose: Applies a function to each row of a matrix using a cluster for parallel processing.

  • General class: Parallel computing

  • Required argument(s):

    • cl: A cluster object specifying the cluster to use for parallel processing.

    • X: A matrix to be processed.

    • fun: The function to apply to each element of X.

  • Notable optional arguments:

    • ...: Additional arguments passed to the function fun.

  • Example:

  • # Load the parallel library
    library(parallel)

    # Create a cluster object with 2 cores
    cl <- makeCluster(2)

    # Create a matrix to operate on
    Example_matrix <- matrix(1:25, ncol = 5, byrow = TRUE)

    # Apply the mean function to each row
    result <- parRapply(cl, Example_matrix, mean)

    # Close the cluster
    stopCluster(cl)

    # Print the result
    print(result)

  • This example demonstrates how to use the parRapply function from the parallel package to apply a function (mean) to each row of a matrix (Example_matrix) in parallel using a cluster object (cl). The ... argument allows passing additional arguments to the function “mean”. The output is a vector containing the mean of elements in each row of the matrix.

Previous
Previous

The “parCapply” Function in R

Next
Next

The “parSapply” Function in R