The “parRapply” Function in R
Package: parallel
Purpose: Applies a function to each row of a matrix using a cluster for parallel processing.
General class: Parallel computing
Required argument(s):
cl: A cluster object specifying the cluster to use for parallel processing.
X: A matrix to be processed.
fun: The function to apply to each element of X.
Notable optional arguments:
...: Additional arguments passed to the function fun.
Example:
# Load the parallel library
library(parallel)
# Create a cluster object with 2 cores
cl <- makeCluster(2)
# Create a matrix to operate on
Example_matrix <- matrix(1:25, ncol = 5, byrow = TRUE)
# Apply the mean function to each row
result <- parRapply(cl, Example_matrix, mean)
# Close the cluster
stopCluster(cl)
# Print the result
print(result)This example demonstrates how to use the parRapply function from the parallel package to apply a function (mean) to each row of a matrix (Example_matrix) in parallel using a cluster object (cl). The ... argument allows passing additional arguments to the function “mean”. The output is a vector containing the mean of elements in each row of the matrix.